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Estimators appror date for multiple frame 
surveys were proposea by Hartley [3]. This 
paper suggests an alteration in these esti- 
mators consisting of basing the weights associ- 
ated with the sample from each frame upon the 
actual sample sizes obtained. The resulting 
estimators have equal or greater efficiency. 
Complexity is reduced in both the estimator 
and sample allocation determination. 

Introduction 

A sampling frame or list is the keystone 
around which a sampling process is constructed. 
But often a single list corresponding to all ele- 
ments in the desired population is not available. 
Consequently, two or more lists are frequently 
used to construct a frame of satisfactory cover- 
age. In other situations a single suitable, but 
relatively costly, frame is available, however 
efficiency considerations suggest the joint use 
of another less costly incomplete frame. 

Commonly used sampling estimators re- 
quire the elimination of duplicated elements 
from the frame. However, such an elimination 

can be impractical. Hartley [3] proposed esti- 
mators and allocation formula suitable for use 
with two overlapping frames. This paper sug- 
gests alterations in these estimators which 
improve efficiency and decrease complexity. 

Notation and Nomenclature 

The survey objective is considered to be 
the estimation of the total (E Y.) of character- 
istic "Y" for a population containing N ele- 
ments. Complete coverage of the desired popu- 
lation is provided by two overlapping frames A 
and B of sizes NA and NB. The population 
can be separated into three domains: (a) the 
non - duplicated elements associated with frame 
A, (ab) the elements duplicated in both A and 
B, and (b) the non - duplicated elements in B. 
Using Na, Nab and Nb to represent the size 
of each domain, Ya' Yab and b' and a' ab 
and to represent the population means and 

unit variances, the basis can be presented 
schematically as: 

Population of size N 

Frame A of size 

Frame B f size NB 

Na Nab Nb 

2 2 
(a' (crab' Yab) 

1 

Yb) 

Several expressions are simplified by referring 
to the relative size of the overlap with respect 
to frame size (a = Nab /Na and = Nab /NB). 

Random samples of nA and nB elements 
are selected independently from the two frames. 
The division of the sample for any frame be- 
tween the two domains (unduplicated and dupli- 
cated elements) is not considered to be subject 
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to control by the sampler. Symbols na and 
nab refer to the sample sizes resulting from 
the random division of Sizes nab and 
are associated similarly with the sample from 
frame B. Defining the sample means ya' rab' 
yab and yb, we have: 



Sampling from frame A: 

nab 

Having this basis, attention can be turned to two 
principal cases: first, the case of domain sizes 

Nab and Nb known and second, the case of 

Nab and Nb unknown but NA and NB known 

with estimates of a and available for sample 
allocation. 

Case of Na, Nab and Nb Known 

Hartley suggested the unbiased estimator of 
the population total 

YH = + + Nab(1 + (1) 

where o < p < . The variance of this esti- 
mator is approximately 

2 

Var(Y H) [(1 -a)2a + 
A 
2 

+ + (2) 
B 

Finite population corrections have been ignored. 

Sampling costs can be expressed by the 
linear function 

Total Cost = nAcA + nBcB (3) 

where and cB define unit costs of sampling 
from each frame respectively. The problem of 
optimizing the sample allocation among the two 
frames and finding the optimum value for p 
consists of minimizing (2) as a function of 

and p subject to restriction (3). Hartley 
expressed the value for p as a bi- quadratic 
while additional formulas were given for nA and 
nB The solution for p, however, has the sim- 
ple expression 

from frame B: 
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anA 

Po an A + 
(4) 

Thus, the optimum value for p is the ratio of 
the expected value of "kb with respect to the 
expected value of nab + nab 

Hartley's procedure does not consider the 
actual division achieved (at random) of the 
and nB elements among the domains. Thus, one 
may ask whether a gain is achieved by making 
p a function of "lb and nab 

To reach a solution, the variance of (1) can 
be taken in two steps by use of the well known 
theorem expressed in symbols of the current 
problem 

Var(Y) = E[Var(Ylnab, nab)] 
+ Var[E(Y Ina' b, nab)] (5) 

where the condition, Inab' nab)' represents the 
actual sample counts achieved. The variable 
within the second term, E[(Y Inab' nab) equals 
the population total for any value of p. Thus, its 
variance equals zero. 

Disregarding finite population corrections, 
N2 

Var(Y Ina' b, nab) p2 náb 
Qab 

a ab 
N2 N2 

+ (1 -p)2 
nab gab + 

b 
(6) 

ab 

Minimization of (6) as a function of p gives the 
solution 

n' ab 
Po n' + n" ab ab 

(7) 



The variance for the estimator with this value 
for p can be found by substituting (7) into (6) 
and obtaining the expected value. The estimator 
and its approximate variance are 

where 

and 

= + Nabyab + Nbyb 

nab ab + nab yab 
yab nab + 

Var(Y ) a (1-a)a 
A anA n B B aab 

N2 

bB 

The order of the approximation in (9) is the 
same as for (2). 

(8) 

(9) 

While it can be proven that estimator (8) is 
always equal or greater in efficiency than (1), 
this increase in efficiency is not reflected in 
variance approximation (9). Substitution of (4) 
into (2) provides an expression identical to (9) 
which indicates that both estimators are equal 
in efficiency to the order of the approximation. 

The departure of variance approximation 
(9) from the true variance of YL was estimated 
by examining terms through the second order 
of a Taylor's expansion of the random variables 
/na, 1 /(nab nab) and 1 /nb around the values 

1 /anA, 1 /(anA + and /RnB respectively. 

The first term of (9) could be corrected by 
multiplying by [ 1 + a /(í -a)nA] and the third 
term by [ 1 + /(1 ]. The correction for 
the second term is [ 1 + /(anA + where 

is a weighted average of (1 -a) and (1 -(3), the 
weights being anA and As noted earlier, 
approximation (9) is also appropriate for the 
variance of estimator (1) with p expressed by 
(4), but in the second term correction be- 
comes the sum of (1 -a) and (1 -R). No change 
occurs in the correction for the first and third 
terms. Thus, it is seen that variance approx- 
imation (9) (or 2) is reasonably accurate for 
all but very small samples and in addition, the 
gain in efficiency by use expression (7) for p 
instead of (4) is negligible except for extremely 
small samples. 

The general solution of the allocation prob- 
lem, as found by minimizing (9) as a function 
of nA and nB subject to cost equation (3) can be 
expressed by the iterative system 
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r2. 
+1 

X 
(ri+)2(1-a)aá + aab (10) 

(ri+j 

1 

+ 

where r = Practice with the system for 
several values of the parameters indicated that 
few iterations are required in most cases. 

To determine the sensitivity of the esti- 
mator to deviations from optimum allocation, 
the optimum value for r and the corresponding 
variance were computed for a wide range of 
values of the parameters. A comparison was 
made to the variances corresponding to devia- 
tions of ten percent in both directions from the 
optimum (that is, 0.90ro and 1. 10ro). The 
variance was increased by more than one per- 
cent in very few instances by the deviation 
from optimum allocation. 

The case of complete coverage by a rela- 
tively costly frame merits some additional con- 
sideration. Defining A as the complete frame, 
it is clear that Nb 0 and = which enable a 
simple graphical presentation of the optimum 
allocation. Figure 1 displays the solutions for 
four relative cost levels and three variance 
ratios. 

Case of Na, Nab and Nb Unknown 

Estimators (8) can serve as the starting 
point for the case of unknown Na, Nab and Nb. 

However, it is necessary to insert estimates for 
these sizes by use of sample data and known NA 

and NB. The expressions NA(na /nA) and 
NB(nb /nB) are unbiased estimators of Na and 

Nb, respectively. Two unbiased estimators of 

Nab are available: NA(náb /nA) and NB(näb /nB). 
Using p and (l -p) as undetermined weights for 
the two estimates of Nab and substituting these 
expressions in (8), an unbiased estimator for 
the population total is 

Y nava + [ nabp + nab (1 -p) ]yab 

NB 
+ nbyb 

where as before yab is the sample mean of all 
elements selected from the domain of duplicated 
elements. 



Use of theorem (5) provides the approxi- 
mate variance 

Var(Y) 
nA 

(1-a)6á + 
A 

2 

NANBa(3 
2 

anA+ ßnB Tab 

+ 
B 

NA(1-a)a 2 
n A 

(1-ß)ß 2 
n B 

2 

(r. 

-1 [ 72 ß(1-ß)(Ya+Yb-Yab)2 

+(1=p)72 
. (14) 

Use of the system with various values of the 
parameters indicates that normally few itera- 
tions are required. 

It is apparent that the sample allocation is 
(12) based on preliminary estimates of the unit vari- 

ances and population means as well as upon 
preliminary estimates of Na, Nab and Nb as 
expressed in a and 3. A numerical investiga- 
tion similar to that discussed for the case of 
Na, Nab and Nb known, indicates the efficiency 
of the estimator is rather insensitive to moder- 
ate departures from optimum allocation. 

The final two terms represent the increase in 
variance due to not knowing Na, Nab and Nb. 

These terms make a significant contribution 
unless either the overlap is nearly complete or 
is relatively small. 

The degree of the approximation in variance 
(12) is not the same as noted earlier for (9) or 
(Z). All terms are exact except for the second. 
Examination of terms through the second order 
of a Taylor's expansion of the second term in 
Var(Y nab' nab) suggests a multiplicative cor- 
rection equal to or less than [1 +(1 -a) /anA + 

(1 -(3) /ßnB]. Thus, the approximation is reason- 
ably accurate for all practical uses. 

Minimization of (12) as a function of p, nA 

and nB subject to cost equation (3) specifies 

NA( 1-a) N 

B 

(1-(3) 

nA Ya nB (Y ab-Yb) 

po NA(1-a) NB( 1-f3) 

nA nB Yab 

To determine the value of p, one may,of 
course,utilize the estimates of the parameters 
used in determining the sample allocation. 
However, some gain in efficiency would proba- 
bly be achieved by using the sample data. An 
estimator of optimum p from the sample data 
is 

NA + 

nA nB 
= 

NAna NBnb 
2 2 yab nA nB 

(15) 

Of course, use of (15) disturbs the unbiasedness 
(13) of estimator (11) for p is now a function of 

nab and n" . However, the degree of bias is 
considered to be negligible. The expected value 
of estimator (11) with p given by (15) was ap- 
proximated by use of a Taylor's expansion in 
which terms through the second order were 
retained. This approximation suggested the 
second term will be biased downward by the 
multiplicative factor [1- ] where is the 
weighted mean of (1 /nA) and (1 the weights 
being NA( -a) /nA and NB( 1-13)/n B 

. 

Hartley suggested an estimator to handle 
the current case, but his weight variable p was 
used to weight two individual estimates of the 
total over the duplicated elements (Nab Yab)' 
The expression for the optimum value for such 
a p includes the parameters Tab and . 

Thus, the estimator suggested herein is some - 
what,simplier. But in addition it can be proven 
that estimator (11) always has equal or greater 
efficiency than the estimator suggested by 
Hartley. 

and provides the sample allocation among the 
two frames. The sample allocation is ex- 
pressed again as an iterative system 

r1 = 

2 2 
2 ri a óab 

+1 c a () a)T2 + 
A (r+E) 

a( ab)2 
+ 

[ri 
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The reduction in variance can be quite 
important. In the not unusual case of equal per 
unit variances, equal means among the various 
strata, coefficient of variation of . 10, a = = . 80, 
and relative costs of /cB = 4, the reduction 
in variance by use of (11) was about one -fourth. 
Cases requiring more extreme sample allocation 
between the two frames, by reason for example 
of greater cost differences, show a greater gain 
in efficiency by use of (11). 

Figure 2 presents the optimum allocation 
for the special case of a = , equal unit vari- 
ances and approximately equal domain means. 
Four relative cost levels and three values for 
the coefficient of variation are considered. 

Numerical Example 

It may be assumed that a survey is to be 
conducted to measure characteristics of daily 
milk consumption in Mexico City. The sampling 
unit selected is the household. Among the vari- 
ous sampling frames available, it is decided to 
use the following two: 

1. Telephone directory 
2. Housing registration records main- 

tained by the Secretary of Housing. 
Preliminary investigations indicate the sec- 

ond frame covers the desired population satis- 
factorily. While the first frame provides inade- 
quate coverage, costs of using it are substanti- 
ally less because the data can be collected by 
telephone. It is assumed to be more economical 
to collect all data by personal interview for 
households selected from the second frame by 
reason of difficulties in matching housing unit 
records to telephone numbers. 

It is estimated that the telephone directory 
provides 40 percent coverage. Per unit vari- 
ances are assumed to be equal in both the dupli- 
cated parts of the population. Applying this 
information to Figure 1 suggests the sample 
allocation of 50 percent to each frame. If the 
relative cost ratio of the housing records with 
respect to the telephone directory were only 2, 
the optimum allocation would be to assign only 
20 percent to the lower cost frame. 
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As an example of different conditions, sup- 
pose that a similar survey is planned for a U.S. 
city. The investigator decides to use two 
frames similar to those suggested earlier. 
However, in this case preliminary investiga- 
tions show that each frame covers about 90 per- 
cent of the desired population while complete 
coverage is provided by using both frames. The 
90 percent value is only a crude estimate for 
survey planning purposes and the investigator 
wishes to treat the domain sizes as unknown 
(Na, Nab and Nb). Supposing that the per unit 
costs of using the telephone directory are only 
one -half those of using a housing unit list and 
the variances and means for the various do- 
mains are equal approximately with a coefficient 
of variation of 0. 5, the optimum allocation indi- 
cated by Figure 2 is to assign 75 percent of the 
sample to the lower cost frame. 

It is clear that many practical situations 
cannot be handled by Figures 1 and 2. The opti- 
mum allocation for these can be determined by 
iterative systems (10) or (14). 
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Figure 1 

Optimum Allocation for Special Case of Complete Coverage 
by Costly Frame 



Proportion of Overlap in Frames 

=0.5 
0 2 4 .6 .8 I. .2 .6 8 0 4 .6 . 

Figure 2 

Optimum Allocation for Special Case of Equal 
Frame Sizes, Equal Variances and Means (Approx.), 

and Unknown Domain Sizes Nab Nb) 


